Who are CGSS?

- CGSS = CO₂ Geological Storage Solutions
- Independent Specialist CO₂ geological storage services firm
- Provide geoscience advice for geological storage of CO₂: Technical, Legal, Regulatory, Strategic
- Assist in deployment of geological storage at industrial scale: Regional Assessment, Prospect Exploration, Site Injection
- Combined 40 years experience in CO₂ storage
- Main Office in Canberra - with Associates and Alliances nationally (Perth, Melbourne, Adelaide, Brisbane) and Internationally
- www.cgss.com.au

Queensland CO₂ Storage Atlas

- Stage 1 of QDME Carbon Geostorage Initiative: 768 – 1,296 Mt storage capacity required for major emission nodes
- 36 Queensland basins assessed for geological storage prospectivity
- High-grade basins for more detailed studies & data acquisition to identify storage sites
- Geological assessment – excludes existing resources
- Product includes A3 hardcopy atlas and GIS (ArcGIS and MapInfo formats): publicly available – see www.cgss.com.au

Outline

1. Overview
2. Assessment approach
3. Ranking method
4. Potential Storage – “fairways”
5. Measurements – T, P, Density, Volumetrics, Reservoir Area
6. Trapping -MAS
7. Insights – Storage Efficiency

Regional Scale Assessment – Results & Methodology

Queensland CO₂ Storage Atlas

- Aim to identify with highest possible certainty prospective basins for geological storage in onshore Queensland (36 basins).
- Options assessed include: regional reservoirs (saline reservoirs & aquifers); depleted oil & gas fields; deep unmineable coal seams; and salt caverns.
- Greatest potential in regional reservoirs using migration assisted storage (MAS)
Aim of CGSS Regional Methodology

- Repeateable
 - Rely on “prospectivity” assessment to drive capacity estimate (map “fairways”)
 - Not algorithms in a spreadsheet (divorced from rocks)
- Based on actual rock characteristics and distributions
 - Not supplanted from elsewhere
 - Avoid wherever possible generic or non site specific probabilistic distribution assumptions
 - e.g. CO₂ density, net/gross, SE
- Produce reliable conservative values
 - That policy groups can plan on with certainty
 - e.g. not enormous academic / theoretical numbers – but real / sensible numbers based on “invaded area”

Conventional vs Unconventional seals

- “Conventional” seals act as a physical barrier (trap) to the migration of fluids (e.g. Jericho Formation).
- Unconventional seals potentially include greensands, siltstones and very fine-grained sandstones. The main feature is very low but effective bulk rock permeability. To be considered as an ”unconventional” seal the formation has be >300 m thick over an area of >2000 km² (Rewan Formation – Galilee Basin)

Potential Storage Area Mapping

- Maps generated for the maximum known extent of reservoir/seals intervals within a basin that are evaluated as having potential for geological storage of CO₂
- The maximum potential storage area incorporates
 - A regional seal >800 m deep at its base
 - A seal of suitable thickness to contain CO₂ (>50 m for conventional seal); >100 m for unconventional seal),
 - A suitable quality reservoir for CO₂ (porosity ≥ 10%; permeability ≥ 5 mD).
- Note: permeability should probably be much higher; depends on clients requirements
- However, the level of detail in mapping maximum potential storage area varies from basin to basin depending on the data availability and geological complexity.
Storage Area “Fairway”

1. Define storage area (“Fairway”)
 - Extent of regional seal (Snake Creek Mudstone/Moolayember Fm) and reservoir used to define probable storage area in Southern Bowen Basin over the Roma Shelf/Wunger Ridge.
 - Fairways difficult to map in detail due to association with thin and narrow fluvial channel sandstones, lack of 3-D seismic data, and limited palaeo-geographic maps
 - Showgrounds Sandstone most widespread reservoir—contains good quality sandstones to depths of 2,300 m in high energy fluvial channels
 - Reservoir quality generally deteriorates towards eastern flank, but difficult to map where reservoir end in Taroom Trough

Temperature & Pressure

2. Calculate temperature and pressure gradients from WOFs
 - Temperature gradient ~35°C through southern Bowen Basin
 - Pressure gradient ~1.4374 psi/m

CO₂ Density

- Under the normal range of pressure/temperature conditions found in sedimentary basins, the density of CO₂ can vary significantly
- Uses the industry standard method of calculating CO₂ density using pressure & temperature data (Span and Wagner 1992)
- The precision of the CO₂ density estimate depends on the accuracy of pressure and temperature estimates.
- Data obtained from CSIRO Pressureplot database, then cross-checked with well data (ideally 10–20 data points).

Volumetric Equation

The equation for volumetric estimation is:

\[MCO₂ = RV \times \phi \times Sg \times \delta_{(CO₂)} \]

- \(MCO₂ \) = mass of CO₂ stored in kilograms
- \(RV \) = total reservoir rock volume in m³ (within fairway – not whole basin)
- \(\phi \) = total effective pore space (as a fraction)
- \(Sg \) = the gas saturation within the above pore space as a fraction of the total pore space (10 %)
- \(\delta_{(CO₂)} \) = the actual density of CO₂ at the given reservoir depth (pressure and temperature) in kg/m².

Note: No use of an assumed basin wide storage efficiency factor

Area & Reservoir

4. Calculate Areas & Reservoir
 Parameters:
 - Area calculated for each depth range over mapped storage area
 - Average net pay zone thickness obtained from gas fields over reservoir area
 - Average porosity obtained from QPED database
 - Drainage cells defined but not used in calculations (beyond regional scope of Atlas)
 - Alternatively, can use isopach maps and regional porosity trends if known (e.g. Eromanga Basin)
Trapping Mechanisms

- There are different mechanisms which immobilise [trap] CO₂ in the subsurface, and the timescales over which they operate (Bachu et al. 2007).
- The lower three mechanisms (dissolution, mineralisation and adsorption) are, mostly, very long-term and are not considered here further.
- The volumetric estimations calculated in this atlas are based around free-phase trapping.

MAS – Migration Assisted Storage

- The migration assisted storage (MAS) process is the main process that can theoretically store enormous quantities of CO₂ in the absence of any subsurface closure.
- The dominant primary trapping mechanism in MAS is discontinuous free-phase trapping as residual gas saturation (RGS) in the trail of a migration plume.
- Using the porosity cut-offs a residual gas saturation (Sgr) of 0.2-0.6 is likely but this is difficult to calculate without core. Therefore a likely conservative value of Sgr = 0.1 has been used for all volumetric calculations.
- Ultimately the CO₂ trapped by these mechanisms is dissolved into the surrounding formation water.

RGS efficiency factor

- Simple volumetric estimation calculations overestimates capacity; calculating the volume of CO₂ that could be stored over the entire reservoir.
- As the migrating plume will not access a large proportion of the reservoir, this value is unrealistic (assuming homogenous reservoir, injection over entire interval, & entire formation water displaced uniformly).
- Therefore to limit extreme values developed a very basic RGS efficiency factor, 15m plume estimate used.

High Prospectivity Areas – Summary

- Contain at least one reservoir-seal interval with demonstrated effectiveness for injection, storage and containment of CO₂ (i.e. have a total ranking score ≥ 13).
- Twenty reservoirs from five basin areas (Bowen, Cooper, Eromanga, Galilee and Surat basins).
- Most reservoirs have either produced hydrocarbons, and/or are major groundwater aquifers.
- Have sufficient data sets to establish their prospectivity.
Storage Capacity estimates

- Matched capacity: Detailed matching of sources and sinks including supply and reservoir performance assessment
- Practical (Viable) capacity: Applies economic and regulatory barriers to realistic capacity
- Effective (Realistic) capacity: Applies technical cut off limits, technically viable estimate, more pragmatic actual site / basin data
- Theoretical capacity: Includes large volumes of “uneconomic” opportunities. Approaches physical limit of pore rock volume; unrealistic and impractical estimate

CGSS method vs Storage Efficiency

<table>
<thead>
<tr>
<th>BASIN</th>
<th>Km²</th>
<th>CGSS Capacity (Mt CO₂)</th>
<th>SE Capacity Approach (4% of pore volume) (Mt CO₂)</th>
<th>CGSS capacity as % of pore volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaillee</td>
<td>447,000</td>
<td>2,430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowen</td>
<td>340,000</td>
<td>339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surat</td>
<td>327,000</td>
<td>2,380</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The thicker the reservoir, the larger the discrepancy

Conclusions

- Queensland CO₂ Geological Storage Atlas assessed 36 basins at regional level
 - High graded basins
- Used the prospectivity in determining capacity
 - Seal and reservoir distribution, heterogeneity and quality
 - Trapping options and viability
 - CO₂ density at each location – not generic value
 - Estimated volume of “invaded area of reservoir” for RGS
- Did not use SE methodology (“couldn’t?”)
 - Relied on practical geological knowledge (looked at rocks - prospectivity) & conservative / sensible estimates
 - Must map “fairways” for sensible capacity estimates